Очень немного людей понимают суть электричества. Такие понятия как "электрический ток", "напряжение" "фаза" и "ноль" для большинства являются темным лесом, хотя с ними мы сталкиваемся каждый день. Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве. Для обучения электричеству с "нуля" нам нужно разобраться с фундаментальными понятиями. В первую очередь нас интересуют электрический ток и электрический заряд.

Электрический ток и электрический заряд

Электрический заряд – это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон. Его заряд равен примерно -1,6 на 10 в минус девятнадцатой степени Кулон.

Заряд электрона - минимальный электрический заряд (квант, порция заряда), который встречается в природе у свободных долгоживущих частиц.

Заряды условно делятся на положительные и отрицательные. Например, если мы потрем эбонитовую палочку о шерсть, она приобретет отрицательный электрический заряд (избыток электронов, которые были захвачены атомами палочки при контакте с шерстью).

Такую же природу имеет статическое электричество на волосах, только в этом случае заряд является положительным (волосы теряют электроны).

Основным видом переменного тока является синусоидальный ток . Это такой ток, который сначала нарастает в одном направлении, достигая максимума (амплитуды) начинает спадать, в какой-то момент становится равным нулю и снова нарастает, но уже в другом направлении.


Непосредственно о таинственных фазе и нуле

Все мы слышали про фазу, три фазы, ноль и заземление.

Простейший случай электрической цепи – однофазная цепь . В ней всего три провода. По одному из проводов ток течет к потребителю (пусть это будет утюг или фен), а по другому – возвращается обратно. Третий провод в однофазной сети – земля (или заземление).

Провод заземления не несет нагрузки, но служит как бы предохранителем. В случае, когда что-то выходит из-под контроля, заземление помогает предотвратить удар электрическим током. По этому проводу избыток электричества отводится или "стекает" в землю.

Провод, по которому ток идет к прибору, называется фазой , а провод, по которому ток возвращается – нулем.

Итак, зачем нужен ноль в электричестве? Да за тем же, что и фаза! По фазному проводу ток поступает к потребителю, а по нулевому - отводится в обратном направлении. Сеть, по которой распространяется переменный ток, является трехфазной. Она состоит из трех фазовых проводов и одного обратного.

Именно по такой сети ток идет до наших квартир. Подходя непосредственно к потребителю (квартирам), ток разделяется на фазы, и каждой из фаз дается по нулю. Частота изменения направления тока в странах СНГ - 50 Гц.

В разных странах действуют разные стандарты напряжений и частот в сети. Например, в обычной домашние розетки в США подается переменный ток напряжением 100-127 Вольт и частотой 60 Герц.

Провода фазы и нуля нельзя путать. Иначе можно устроить короткое замыкание в цепи. Чтобы этого не произошло и Вы ничего не перепутали, провода приобрели разную окраску.

Каким цветом фаза и ноль обозначены в электричестве? Ноль, как правило, синего или голубого цвета, а фаза - белого, черного или коричневого. Провод заземления также имеет свой окрас - желто-зеленый.


Итак, сегодня мы узнали, что же значат понятия «фаза» и «ноль» в электричестве. Будем просто счастливы, если для кого-то эта информация была новой и интересной. Теперь, когда вы услышите что-то про электричество, фазу, ноль и землю, вы уже будете знать, о чем идет речь. Напоследок напоминаем, если вам вдруг понадобится произвести расчет трехфазной цепи переменного тока, вы можете смело обращаться в . С помощью наших специалистов даже самая дикая и сложная задача станет вам «по зубам».

Вероятно, нет необходимости объяснять тебе значение электричества для обеспечения нормальной жизнедеятельности каждого человека. Не будет преувеличением сказать, что сегодня оно является такой же её

составной частью, как вода, тепло, пища. И если в доме погас свет, ты,обжигая пальцы о зажжённую спичку, немедленно звонишь к нам. Долгий и трудный путь проходит электричество прежде, чем попасть в твой дом. Выработанное из топлива на электростанции, оно путешествует через трансформаторные и коммутационные подстанции, через тысячи километров линий, укреплённых на десятках тысяч опор.

Электричество сегодня – это совершенная технология, надёжное и качественное электроснабжение, забота о потребителе и его обслуживание.

Однако, это ещё не всё. Конечное звено в электрической цепочке – это электрооборудование твоего дома. А оно, как и всякое другое, требует екоторых знаний для его правильной эксплуатации. Поэтому мы призываем тебя к сотрудничеству с нами и с этой целью даём некоторые рекомендации и предостережения. Предостережения выделены красным цветом.

Речь пойдёт о следующем:

1. Правовые аспекты. Абонент должен быть ознакомлен со своими правами, обязанностями и ответственностью по отношению к энергоснабжающей организации. То же - по отношению энергоснабжающей организации к нему.

2. Знакомство с квартирной электропроводкой, коммутационной аппаратурой и установочными изделиями.

4. Электричество требует не только определённых знаний, но и строгого соблюдения определённых правил от пользователя. Оно представляет опасность, как для тех, кто не умеет им пользоваться, так и для недисциплинированных «умельцев». Поэтому мы ознакомим тебя с основами электробезопасности.

Мы призываем тебя с пониманием отнестись к нашим рекомендациям и предостережениям. Мы также надеемся, что ты не будешь наносить ущерб упомянутым выше сетевым сооружениям и электрооборудованию.

Желаем тебе всех благ, в том числе и тех, которые даёт электроэнергия.

Азбука электричества

Электрический ток представляет собой направленное движение отрицательно заряженных элементарных частиц – электронов от одного полюса замкнутой электрической цепи к другому. Электроны, способные перемещаться, существуют только в определённых веществах, называемых проводниками. Вещества, не содержащие свободных электронов, принадлежат к категории диэлектриков (изоляторов).

Чтобы движение свободных электронов в проводнике от одного полюса к другому было возможным, между полюсами должна существовать разность потенциалов или напряжение. Его можно уподобить некоему давлению, толкающему электроны. Чтобы непрерывно поддерживать протекание тока в замкнутой электрической цепи, необходим источник электродвижущей силы, который вырабатывает электрическую энергию, преобразуя в неё другие виды энергии.

Количество электронов, проходящее через поперечное сечение проводника в единицу времени, может быть более или менее значительным. Оно определяет интенсивность – силу тока.

В зависимости от материала, длины и сечения материала проводник оказывает прохождению тока большее или меньшее сопротивление. Оно проявляется, в частности, в нагреве проводника.
Чем длиннее проводник, тем больше его сопротивление. Но чем больше сечение проводника, тем меньше его сопротивление.
Источник электроэнергии характеризуется мощностью, то есть количеством электроэнергии, которую он вырабатывает в единицу времени. Электрическое устройство (прибор), потребляющее электроэнергию, также характеризуется мощностью.

Напряжение измеряется в вольтах (В).

Сила (величина) тока измеряется в амперах (А).

Сопротивление измеряется в Омах (Ом).

Мощность измеряется в ваттах (Вт). 1000 ватт составляют 1 киловатт
(кВт).

Выработка и потребление электроэнергии измеряются в киловатт-часах (кВт-ч). (Не путайте их с киловаттами).

Между этими величинами существуют следующие зависимости:

1.Величина тока равняется напряжению, приложенному к концам проводника, делённому на его сопротивление (закон Ома).

2.Мощность электроустановки равна произведению напряжения на ток.

3. Количество потреблённой электроэнергии равно произведению мощности электроустановки на время её работы.

4. Количество тепла, превращённого из электроэнергии, пропорционально величине тока, возведенную во вторую степень, сопротивлению проводника и времени. Например, при увеличении тока в два раза, выделяется в четыре раза больше тепла.

На паспортной табличке электрического изделия, а также в инструкции по его эксплуатации обязательно указываются его номинальные данные: напряжение, мощность (или величина тока) и др.


Аварийные и ненормальные режимы

Короткое замыкание. Если перемкнуть два провода, подводящие ток, к электрическому прибору, ток резко возрастёт (в 10 раз и более). Возрастание тока в 10 раз приведёт к увеличению количества тепла в проводах в 100 раз. При этом проводка будет разрушена и возникнет опасность пожара. Во избежание этого сеть должна быть оборудована устройством мгновенного автоматического отключения.

Перегрузка. Такая же опасность разрушения, но за более продолжительное время возникает при превышении силы тока сверх нормы, допустимой для квартирной проводки. И в этом случае она должна быть автоматически отключена.
Отклонение напряжения. На паспортном щитке электрического прибора нанесено его номинальное напряжение, то есть напряжение, обеспечивающее его нормальную работу. Как правило, оно составляет 230 вольт. При отклонениях напряжения, как в сторону увеличения, так и в сторону уменьшения нарушается нормальная работа и сокращается срок службы электроприбора. При значительном отклонении напряжения возможно повреждение электроприбора. Если в вашей квартире напряжение ниже 200 В, необходимо пользоваться стабилизаторами напряжения.
Скачки напряжения. Речь идет о кратковременном увеличении напряжения, которое может достичь сотен и даже более тысячи вольт. Такое высокое напряжение может повредить некоторые домашние электроприборы. К их числу относятся приборы, которые собираются из мельчайших электронных деталей: компьютеры, телевизоры,
музыкальные центры, видеомагнитофоны и т.п.
Есть несколько факторов, которые вызывают «скачки напряжения»:

Удар молнии в провода линии электропередачи или в непосредственной близости от неё.

Операции автоматической коммутации (включение и отключение мощных электродвигателей промышленных предприятий и др.).

Незапланированные переключения, которые приходится выполнять при возникновении неблагоприятных условий.

О защите от «скачков напряжения» будет сказано далее.

«Перекос» напряжения. Это явление состоит в том, что одна часть электроприборов оказывается под завышенным напряжением, а другая – под заниженным. «Перекос» напряжения происходит при неисправности в сети 400/230 В. Вы можете его заметить по ненормальной работе ваших электроприборов. Так, лампочки меньшей мощности светятся ярким светом, а лампочки большей мощности горят «вполнакала».

Если при этом квартирная сеть не отключилась автоматически, её надо немедленно отключить вручную.

Электрический щиток

В этом разделе мы разберемся с составом электрического щитка.

Ваша квартира питается электроэнергией по двум проводам. Один провод называется фазным, а другой – нулевым. Нулевой провод заземлён. Однако ошибочно считать, что он не представляет опасность.

Прикосновение, как к фазному, так и к нулевому проводу опасно для жизни!

В настоящее время существуют здания с трёхпроводной сетью: фазный провод, нулевой провод, заземляющий провод. Заземляющий провод предназначен для заземления металлических корпусов электрических приборов (более подробно об этом см. в главе «Электробезопасность»). Если заземляющий провод отсутствует, то эти приборы включаются без заземления.

Компоненты электрического щитка

В состав электрического щитка входят электросчетчик, предохранители (или автоматы), устройство защитного отключения.

Счётчик электроэнергии предназначен для измерения потреблённой электроэнергии, которую необходимо своевременно оплатить. Он подключается непосредственно на вводе и может быть установлен в квартире или на лестничной площадке на коллективном щитке учёта. Если счётчик установлен в квартире, то владелец должен обеспечить его сохранность в исправном состоянии: оберегать от ударов и сотрясений, не загромождать подход к нему, обеспечить возможность удобной замены и снятия показаний. Нельзя переносить счётчик без согласования с энергонадзором.
Если вы заметите признаки неисправности счётчика (например, диск счётчика не вращается при наличии нагрузки или вращается при её отсутствии), необходимо немедленно вызвать представителя энергонадзора.
Не пытайтесь нарушить правильность учёта с целью хищения электроэнергии!

Кража электроэнергии не менее постыдна, чем любая кража. Все «способы» хищения хорошо известны энергонадзору, поэтому похититель неминуемо будет разоблачён и привлечён к ответственности. Более того. Не все эти «способы» достаточно безопасны. Известны многочисленные случаи электротравматизма, связанные с попытками хищения.

Для определения расхода электроэнергии за определённый промежуток времени необходимо из показаний счётчика, взятых в конце промежутка, вычесть показания, взятые в начале промежутка. Десятые доли киловатт-часа (в красном окошке после запятой) отбрасываются.

Пример 1. Конечные показания счётчика – 5124. Начальные показания счётчика – 4975. Расход электроэнергии составит: 5124 – 4975 = 149 киловатт-часов.

Пример 2. Конечные показания счётчика – 0047. Начальные показания счётчика - 9950

Расход электроэнергии составит: 10047 – 9950 = 97 киловатт-часов.

На щитке счётчика наносится его передаточное число. Это - число оборотов диска, соответствующее одному киловатт-часу. Оно позволяет определить суммарную мощность нагрузки. Отсчитайте число оборотов диска за определённое время. Умножьте его на 3600 и разделите на передаточное число и на время

Пример 3. Передаточное число счётчика: 1 кВт-ч – 450 оборотов диска. Счётчик сделал 10 оборотов за 60 секунд. Тогда мощность его нагрузки составит: КВт.

Разделив мощность в ваттах на напряжение, мы получим ток нагрузки:

1330/230 = 5,8. А

Предохранитель – электрический аппарат, осуществляющий автоматическое отключение электрической цепи при перегрузке или коротком замыкании. Пробочный предохранитель состоит из сменной плавкой вставки – тонкой проволоки, запаянной в трубку. Вставка размещается в корпусе с контактным устройством – пробке, которая ввинчивается в патрон.

Предохранители устанавливаются и в фазном, и в нулевом проводе. При перегрузках и токах короткого замыкания плавкая вставка нагревается до температуры плавления металла и, расплавляясь, разрывает электрическую цепь (перегорает). После отключения плавкую вставку следует заменить новой.

Пробки одноразового действия, в которых вставка напаивалась, необходимо изъять из обращения.

Автоматы выполняют те же функции, что и предохранители, но по сравнению с ними обеспечивают многократность действия, более высокую точность установки на определённый ток отключения и удобство ручного включения и отключения.

Автомат отключается под действием пружины, которая во включённом положении удерживается защёлкой. Средством защиты в этих автоматах является электромагнитный или биметаллический элемент, которые срабатывают при перегрузках и коротких замыканиях, освобождая при этом защёлку.

Широкое распространение получили пробочные автоматы. Для их установки подходит патрон пробочного предохранителя. Автомат имеет две кнопки: для включения и для отключения. Для включения автомата
после его автоматического отключения необходимо предварительно нажать на отключающую кнопку (доотключить). Аналогичное действие выполняется и в автоматах других типов (например, перевод «язычка» в
нижнее положение).

Автоматы и предохранители характеризуются номинальным током. Это - максимальный ток нагрузки, обеспечивающий их продолжительную работу. Номинальный ток автомата или плавкой вставки должен быть выбран в соответствии с максимально возможным током нагрузки в вашей квартире. При завышенном номинальном токе защита может быть не обеспечена. При заниженном – она будет излишне срабатывать, вызывая отключение.

Методика определения тока нагрузки с помощью счётчика приведена выше.

При этом необходимо включить только те приборы, которые в реальных условиях работают одновременно. Определённый таким образом ток нагрузки округляют в большую сторону до стандартного ближайшего номинального тока.

Не заменяйте перегоревшую плавкую вставку «жучком» (проволокой)!

Не перемыкайте зажимы автомата!

Убедитесь, что при вывернутых пробках (отключённых автоматах) напряжение в квартире отсутствует!

Устройство защитного отключения (УЗО) предназначено для автоматического отключения квартирной сети при попадании человека под напряжение, а также при возникновении неисправности в сети и электроприборах. Этим устройством весьма рекомендуется дополнить существующие защитные устройства. Установку УЗО должен выполнить квалифицированный электрик.

Квартирная электропроводка

В современных зданиях квартирная электропроводка, как правило, выполнена алюминиевым проводом сечением 4 кв. мм. Пропускная способность этой электропроводки составляет около 10 А.

Как указывалось в гл.3, таким должен быть и номинальный ток плавкой вставки или автомата. Этот ток соответствует максимальной мощности включенных приборов – 2300Вт (230.10). Поэтому для приборов значительной мощности (электроплиты, кондиционеры, крупные обогреватели и пр.) на электрощитке вашей квартиры следует подготовить отдельную цепь, Необходимо также установить отдельную розетку, отдельный автомат, правильно распределить мощность для каждого постоянно действующего прибора и правильно распределить мощность приборов между электрическими цепями.

Электрическая проводка выполняется согласно действующим нормам и правилам. При наличии нескольких присоединений в одной квартире каждый автомат должен быть снабжён надписью с наименованием присоединения.

Не занимайтесь самостоятельно прокладкой или реконструкцией проводки. Эту работу может выполнить только квалифицированный электрик.
Электрическую проводку следует оберегать от повреждений. Прежде, чем вбить гвоздь в стену, необходимо убедиться, что в этом месте электропроводка отсутствует (свериться по чертежу или проверить при помощи специального прибора).

Если квартиру заливает водой, необходимо немедленно отключить вашу квартирную сеть и включить её только тогда, когда стены полностью просохнут. Такое же отключение необходимо выполнить при возникновении или угрозе возникновения чрезвычайных ситуаций (пожар, наводнение, технологические аварии и др.).

Электрические розетки служат для включения электрических приборов в сеть. Вилка электроприбора должна подходить к розетке, а номинальный ток электроприбора не должен превышать номинальный ток розетки. Розетка должна быть надёжно закреплена, не иметь не иметь видимых повреждений, копоти, подгоревших контактов. В противном случае её следует заменить.

Прежде, чем пользоваться розеткой, убедитесь, что у вас сухие руки, и вы обуты в сухую обувь. Если электрический прибор снабжён выключателем, то его необходимо раньше выключить этим выключателем, а затем вытянуть вилку из розетки. Включение производится в обратном порядке.
При выключении электроприбора не тяните за шнур. Придерживая розетку одной рукой, другой рукой выньте вилку.
Удлинитель. Пользуйтесь шнуром-удлинителем в случае необходимости и на короткий срок. Не пользуйтесь удлинителями кустарного изготовления, а также удлинителями, имеющими повреждения оболочки. Повреждённый удлинитель следует не ремонтировать, а изъять из пользования. Удлинитель подключают сначала к прибору, а потом к розетке. Выключение производится в обратном порядке.

Разветвитель. При пользовании им необходимо следить, чтобы розетка не перегружалась суммарной нагрузкой. Предпочтительнее пользоваться не «тройником», а разветвителем, снабжённым шнуром и выключателем.

Если в квартире исчезло напряжение

У соседей напряжение также исчезло

Сообщить в энергоснабжающую организацию. Не заниматься устранением неполадок самому.

У соседей напряжение есть. Место короткого замыкания известно.

Отсоединить от сети повреждённый прибор (шнур).

Заменить сгоревшие вставки.

Отключить все электроприборы в квартире.

Вкрутить пробки.

После появления напряжения включить электроприборы

Проверить положение автоматов. Отключенные автоматы включить, предварительно подготовив их к включению. Если автомат не включается, выждите 5 минут.

Место короткого замыкания неизвестно.

Отключить в квартире освещение и все электроприборы.
Вывернуть пробки, осмотреть вставки.
Заменить сгоревшие вставки.
Вкрутить пробки.

Проверить положение автоматов. Отключенные автоматы включить, предварительно подготовив их к включению. Если автомат не включается, выждите 5 минут.

Включать по одному все приборы и освещение.

При последнем действии по п.3 произошло повторное отключение.

Отсоединить прибор, включённый последним. Далее действовать согласно п.2

После повторного включения напряжение в квартире появилось. Причину отключения не удалось выявить.

Вероятной причиной является перегрузка. Отключите ненужные электроприборы.
Не открывайте распределительные щиты общего пользования!
Дождитесь прихода электрика.

Бытовые электроприборы

В вашей квартире находится множество разнообразных электрических приборов, и их количество растёт с каждым годом. Всеми приборами можно и нужно пользоваться более эффективно, экономически выгодно и, главное, безопасно. Для этого надо знать несколько общих положений.

Старайтесь изъять из пользования устаревшие приборы. Современные электроприборы удобны в обращении, более эффективны и, как правило, более выгодны экономически.
Важно, чтобы прибор, который вы приобретаете, соответствовал вашим потребностям. Для этого следует принять во внимание состав семьи, образ жизни, количество детей, частоту пользования и т.д., и только тогда решить, какими характеристиками должен обладать электроприбор, который вы хотите приобрести.

Рекомендуется проанализировать и сравнить потребление электроэнергии различными электроприборами, данные о которых, как правило, приводятся на фабричном ярлыке либо в прилагаемой к прибору инструкции по эксплуатации.

Убедитесь, что проводка и защитные устройства вашей квартиры подходят для установки приобретаемого электроприбора.


Прежде, чем включить электроприбор внимательно ознакомьтесь с инструкцией по его эксплуатации!

Отопительные приборы

Приводим сравнительную характеристику некоторых отопительных приборов.

Рефлектор. Состоит из одного и более нагревательных элементов и отражателя. Энергия передаётся излучением отражателя («зеркала») в ту сторону, куда повёрнут прибор. Потребляемая мощность – 1200 – 3200 Вт. К преимуществам прибора относятся его относительная дешевизна, а также начало нагрева сразу после включения.

Вместе с тем, рефлекторы обладают рядом недостатков:
Тепло распространяется только в одну сторону, помещение прогревается медленно.

Высокая температура может стать причиной возгорания предметов, находящихся вблизи рефлектора.

Высокая температура и недостаточное прикрытие нагревательных элементов представляют опасность для детей.

Отсутствие терморегулятора.

Высушивает воздух в комнате.

Тепловентилятор. Воздух поступает через отверстия в корпусе, нагревается спиралями (одной или несколькими) и распространяется с помощью вентилятора. Потребляемая мощность – 1000 – 3000 Вт. Как равило, в приборе имеются терморегулятор и переключатель режимов (изменяет количество включенных спиралей). Прибор безопасен, так как спирали надёжно скрыты. Летом его можно использовать в качестве вентилятора. Тепловентилятор благодаря принудительной циркуляции быстро и равномерно прогревает помещение. Недостатки прибора:
Высушивает воздух в комнате.
Мощная воздушная струя и шум при работе могут создавать неприятное ощущение у людей с повышенной чувствительностью.

Воздухонагреватель. Воздух поступает через отверстия в нижней части рибора, нагревается от спиралей и выходит сверху. Потребляемая мощность – 500 – 3000 Вт. Прибор также безопасен и может быть установлен в детской комнате. Он также снабжён терморегулятором и переключателем режимов. Однако, по сравнению с тепловентилятором он более медленно прогревает помещение. Воздухонагреватель также высушивает воздух в комнате.

Масляный обогреватель (радиатор). Он содержит нагревательный элемент (один или более), который подогревает масло, находящееся в замкнутой системе. При соприкосновении с нагревателем воздух в комнате нагревается. Потребляемая мощность – 2000 – 2500 Вт. Прибор совершенно безопасен, снабжён переключателем режима и терморегулятором. Тепло распространяется во все стороны равномерно, и воздух в комнате не высушивается. К недостаткам прибора относятся большой вес, относительно высокая стоимость, медленный прогрев помещения.

Как сэкономить электроэнергию при пользовании отопительными приборами.

1. Не допускайте утечек тепла. Важно добиться плотного прилегания дверей и окон в комнатах, для чего следует ликвидировать щели между окном и рамой, дверью и косяком. Проникновение воздуха через щели ведёт к потерям тепла, а, следовательно, и к увеличению расхода электроэнергии.

2. Не обогревайте пустые помещения.

3. Зимой рекомендуется поддерживать температуру в комнате 18 - 20°С при условии, что люди, находящиеся в квартире, одеты в удобную одежду, соответствующую сезону. Если отопительный прибор не снабжён терморегулятором, за температурой воздуха в помещении можно проследить по термометру, установленному на стене. Терморегулятор позволяет установить нужную температуру в обогреваемой комнате. Он выключает прибор, как только температура достигнет заданного уровня, и автоматически включает его, когда температура ниже заданной.

4. Должно быть обеспечено свободное поступление нагретого воздуха от прибора в комнату (особенно при пользовании тепловентилятором). Не используйте прибор для сушки одежды, не загромождайте его различными предметами.

Не помещайте вблизи отопительного прибора горючих материалов и легковоспламеняющихся предметов!

Холодильник

Мощность этого электроприбора сравнительно невелика, однако, он может потреблять достаточное количество электроэнергии, так как работает непрерывно 24 часа в сутки. Для экономии электроэнергии выполняйте ряд рекомендаций.
Выбирайте объём камер приобретаемого холодильника в соответствии с требуемым количеством продуктов, которые будут в нём храниться.
Место установки холодильника должно быть удалено от источников тепла и защищено от солнечных лучей.

Для обеспечения полной изоляции рекомендуется плотно закрывать дверцы и периодически проверять изолирующие резиновые прокладки. Деформированные прокладки ведут к проникновению тёплого внешнего
воздуха в камеры, что, в свою очередь, влечёт за собой повышенное потребление электроэнергии. Дверцы открывайте как можно реже и не держите их долго открытыми.

Следите, чтобы задняя стенка холодильника не покрывалась пылью. Обеспечивайте свободную циркуляцию воздуха вокруг холодильника.
Не ставьте в холодильник тёплую пищу. Подождите, пока пища остынет до комнатной температуры.

Установите термостат на температуру 5. - 7..
Своевременно размораживайте и чистите холодильник. Нарост льда существенно увеличивает расход электроэнергии. Пользуйтесь разведенным в воде уксусом – это поможет избавиться от неприятного запаха. Перед размораживанием снизьте температуру в морозильной камере. Это позволит оставаться продуктам холодными в течение длительного срока после извлечения из морозильной камеры.

Морозильную камеру рекомендуется заполнять, по крайней мере, на две трети своей ёмкости, что обеспечит её эффективную работу. С другой стороны, в неё не следует помещать слишком много продуктов, так как необходимо обеспечить свободную циркуляцию воздуха в камере.

Стиральная машина

Стиральная машина – один из самых распространённых электроприборов, без которых трудно представить нашу жизнь. Это так просто – закладываем бельё, насыпаем стиральный порошок, наливаем смягчитель, нажимаем кнопку и через некоторое время получаем чистое приятно пахнущее бельё. Важно знать, что не все стиральные машины одинаковы, как и не одинаковы требования к стирке в разных семьях. Поэтому, прежде чем приобрести стиральную машину необходимо учесть:
Состав вашей семьи. Чем больше семья, тем больше должна быть мощность машины и объём её стирального бака.

Скорость отжима. Выбирайте машину с более высокой скоростью отжима, поскольку, чем она выше, тем суше выстиранное бельё.
Потребление машиной электроэнергии, воды и моющих средств. Последние модели стиральных машин более экономичны.
Современная стиральная машина потребляет ток более 10 А. Её нельзя включать в общую квартирную сеть. Подготовка базы для стиральной машина включает в себя выполнение прокладку отдельной электропроводки, установку автомата на 16 А и отдельной трёхполюсной розетки.
Следующие рекомендации помогут вам сэкономить электроэнергию при пользовании стиральной машиной:

Рекомендуется закладывать в бак не больше и не меньше того количества белья, на которое она рассчитана. Перегрузка, так же, как и недогрузка неэкономична. Кроме того, страдает и качество стирки.
Рекомендуется использовать программу с предварительным полосканием только для очень загрязнённого белья. Без предварительного полоскания экономится около 20% электроэнергии.

Стирка при температуре воды 60. вместо 90. сэкономит вам около 25% электроэнергии. Поэтому, если бельё не слишком загрязнено, имеет смысл стирать его при более низкой температуре.

Электрическая плита

Электрическая плита так же, как и стиральная машина, требует прокладки отдельной электропроводки, установки автомата на 16 А и отдельной трёхполюсной розетки. Рекомендуется отдать предпочтение плите не столь мощной, но изготовленной по современной технологии – это позволит вам экономить электроэнергию.
Для эффективной и экономной эксплуатации рекомендуется:

Диаметр кастрюли должен соответствовать диаметру конфорки.
Кастрюля должна иметь гладкое дно и закрыта подходящей крышкой
При варке пищи в кастрюле не должно быть много воды.
После того, как вода в кастрюле закипит, рекомендуется снизить температуру до необходимого для продолжения варки уровня.

Незадолго до окончания приготовления пищи рекомендуется выключить конфорку, так как её медленное остывание обеспечит достаточно тепла для завершения варки.

При приготовлении пищи старайтесь, как можно реже поднимать крышку, что сохраняет тепло, предотвращает избыточный расход энергии и сокращает время приготовления пищи.
Пользуйтесь скороваркой – это сэкономит и время и электроэнергию.Воздерживайтесь от предварительного нагрева духовки, если этого не требует рецепт;

Не открывайте дверцу духовки без необходимости.

Освещение

Освещение жилого помещения должно соответствовать гигиеническим нормам. Недостаточная освещённость наносит ущерб здоровью. Так, например, не следует выключать потолочную лампу, освещая комнату только настольной лампой, выключать полностью освещение при просмотре телевизионных передач и пр. Осветительный элемент выбирается в зависимости от того, где он будет находиться, и от возлагаемой на него функции (общее, местное, декоративное и др.). Правильно выбранные тип и мощность лампы дадут возможность эффективно и экономно расходовать электроэнергию.


Существует широкий ассортимент электроламп, из которых пока самыми распространёнными являются лампы накаливания. Эти лампы дешевы, не требуют дополнительных комплектующих деталей. Заменить сгоревшую лампу не представляет сложности. Лампы накаливания наиболее точно передают цвет окружающих предметов. К недостаткам ламп накаливания относится относительно небольшой срок службы (до 1000 часов). Другой существенный недостаток – неэкономичность. Лишь мене 5% затраченной энергии преобразуется излучаемый свет; всё
остальное уходит на нагревание.

Флуоресцентные лампы наиболее распространены после ламп накаливания. Такая лампа потребляет в 6 раз меньше электроэнергии, чем лампа накаливания, при равной освещённости, а также имеет более продолжительный срок службы. Флуоресцентная лампа действует только с помощью дополнительных приборов – дросселя и стартёра. К недостаткам флуоресцентной лампы относятся также её большие размеры, незначительный шум и некоторое искажение цвета освещаемых предметов.

Одно из важнейших направлений усовершенствования технологии освещения – это создание флуоресцентных компакт-ламп. По своей конструкции и принципу действия компакт-лампа ничем не отличается от флуоресцентной за исключением размеров. По сравнению с лампами накаливания флуоресцентные комакт-лампы дают возможность сократить затраты электроэнергии на 70% - 85%, при этом срок их службы в 8 – 13 раз выше. Поэтому вскоре они заменят в быту лампы накаливания.

Для экономии электроэнергии без ухудшения качества освещения рекомендуется:

Максимальное использование естественного освещения.

Следите за чистотой окон.

Не загромождайте подоконники.

Не завешивайте окно несколькими занавесями и шторами.

Применение соответствующих осветительных приборов.

Использование светлых оттенков (отражающих свет) для окраски стен, потолка пола и при выборе цвета мебели.
Применение средств управления освещением (сдвоенные выключатели для люстр, выключатели с реостатом и пр.).
Использование одной лампы накаливания большой мощности вместо двух маломощных. Например, использование одной лампы мощностью 100 Вт вместо двух 60-ваттных позволяет сократить потребление электроэнергии на 20%, не говоря уже о снижении расходов на покупку ламп.
Продуманная система освещения в доме существенно влияет на расход электроэнергии.

Электронные приборы

К электронным приборам в вашей квартире, чувствительным к скачкам напряжения, относятся телевизоры, видеомагнитофоны, музыкальные центры, компьютеры и др., которые собираются из мельчайших электронных деталей на базе прогрессивных технологий. Именно они могут пострадать в первую очередь от скачков напряжения, если при их создании не была предусмотрена соответствующая защита. При этом сокращается срок службы прибора, а в некоторых случаях может произойти его поломка. Для защиты чувствительных электронных приборов рекомендуется следующее:

Не подключать чувствительные электронные приборы к той же розетке или к той же цепи, к которой уже подключён другой прибор с электромотором, например, холодильник, стиральная машина.
Выключать чувствительные электронные приборы и отключать их от сети (вилкой), если в течение длительного времени ими не пользуются.
Рекомендуется также отключать чувствительные электронные приборы во время грозы, бури и ливня, а также при перебоях в электроснабжении.
С помощью специальных предохранителей обеспечить защиту чувствительных электронных приборов от скачков напряжения. Такие предохранители устанавливаются меду розеткой и штепсельной вилкой чувствительного электронного прибора. Их можно установить самостоятельно.
Приобретать чувствительные электронные приборы со специальной защитой. По данному вопросу вы можете проконсультироваться не только с продавцом, но и с техниками и другими специалистами из специализированных мастерских.

Применение всех вышеперечисленных средств не гарантирует полную защиту чувствительных электронных приборов, но существенно снижает вероятность их повреждения.

Содержание:

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором - периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется , измеряемой в амперах .

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как . Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица - вольт . Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление , измеряемое в омах . Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока - 1 А.

Закон Ома

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и . Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким - на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов - напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность , связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит . Он означает перемещение одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Электрика для чайников: основы электроники

Профессия электрик была и будет востребованной, т.к. с каждым годом потребление электроэнергии только возрастает, а электрические сети все масштабнее распространяются по планете. В этой статье мы хотим рассказать читателям, как стать электриком с нуля, с чего начать и где учиться, чтобы быть профессионалом в своем деле.

Прежде всего нужно отметить, что электрик может быть электромонтером, электронщиком, автоэлектриком, инженером-электриком, проектировщиком, электромехаником, электротехником и даже энергетиком, если брать в целом. Как вы понимаете, в каждой из профессий свои особенности. Чтобы стать электриком, для начала Вы должны выбрать для себя подходящую специальность, с которой вы решите в дальнейшем связать свою жизнь ну или отдельный промежуток времени.

Наш совет – если Вам действительно интересно все, что связано с электричеством, лучше планировать наперед, выбирая перспективные направления, которые являются залогом научно-технического прогресса. Весьма интересной работой на сегодняшний день является профессия проектировщик электроснабжения или же автоэлектрик диагност.

С чего начать обучение?

На сегодняшний день стать электриком с нуля можно обучившись в ВУЗе, техникуме, колледже, ПТУ или даже на специальных экстренных курсах. Нельзя сказать, что высшее учебное заведение – это фундамент, благодаря которому можно стать профессиональным электромонтажником. Довольно много специалистов вообще самоучки, которые окончили техникум, чтобы просто получить корочки и устроиться на предприятие.

Рассмотрим несколько наиболее популярных способов получить профессию электрик:

  1. ВУЗ. Длительность обучения от 4 до 5,5 лет. Выпускники могут быть инженерами, т.к. проходят наиболее развернутый теоретический и практический курс. Обучение может быть бесплатным.
  2. Техникум. При поступлении после 9 класса курс обучения составляет от 3 до 4 лет. После 11 класса останется обучиться от 1,5 до 3 лет. Квалификация, которую получают выпускники – техник. Есть возможность бесплатно выучиться.
  3. Колледж, ПТУ – обучение от 1 до 3 лет. После окончания учебы можно стать слесарем-электриком по ремонту электрооборудования. Как и в двух предыдущих случаях, получить образования можно бесплатно.
  4. Экстренные курсы – от 3 недель до 2 месяцев. Самый быстрый способ стать электриком с нуля. На сегодняшний день обучиться профессии можно даже в онлайн-режиме благодаря скайп-конференциям и индивидуальному обучению. Стоимость курсов колеблется от 10 до 17 тыс. рублей (цены на 2017 год).
  5. Самообучение. Подойдет лишь в том случае, если вы хотите стать электромонтажником в домашних условиях. Существует множество книг, платных курсов и даже сайтов, как наш , где Вы можете узнать практически все для того, чтобы самостоятельно выполнять несложные работы по электромонтажу. На этом способе, позволяющем стать грамотным электромонтажником с нуля, мы остановимся подробнее.

Первые шаги к обучению

Несколько слов про самоучек

Если вас интересует профессия электрик только для того, чтобы самостоятельно выполнять несложные электромонтажные работы, то достаточно будет по книгам и видеокурсам изучить весь материал, после чего с малого выполнять простейшие подключения и ремонты. Мы не раз встречали довольно грамотных электриков, которые выполняли сложные работы без образования, и с уверенностью можно сказать, что делали они это очень профессионально. В то же время попадались и горе-электрики с высшим образованием, которых язык не поворачивается назвать инженерами.

Все это ведется к тому, что стать электриком в домашних условиях можно, но все же не помешает закрепить полученные знания, пройдя курсы. Еще один способ обучиться всем необходимым навыкам – попроситься помощником электрика на стройку. Вы также можете дать объявление на различных форумах, что согласны бесплатно или за небольшой процент от прибыли помогать электромонтажникам на «шабашках». Очень многие специалисты не откажутся от помощи, типо «поднять на этаж», проштробить или еще чем-нибудь помочь за пару сотен рублей. Вы в свою очередь сможете набраться опыта, наблюдая за работой мастера. Через несколько месяцев такой взаимовыгодной работы можно и самому начинать подключать розетки, автоматы либо даже ремонтировать светильники. А дальше уже только опыт и новые объекты помогут вам стать хорошим электриком без образования.

Ну и последнее, что рекомендуем – обучиться азам по нашим советам. Для начала можете изучить рубрику , после этого перейти на и так по всем разделам. В дополнении к этому не помешает изучить книги, о которых мы также расскажем и подыскать подходящий видеокурс. В итоге, если будет стремление и вы внимательно отнесетесь ко всем поставленным задачам, стать электриком в домашних условиях непременно получится.

Чтобы вы понимали перспективы такой профессии, на сегодняшний день очень много юристов, экономистов и других специальностей, где больше нужен умственный труд. А вот рабочей силы катастрофически не хватает предприятиям. В результате при большом желании можно выучиться и найти высокооплачиваемую работу, если вы действительно покажете себя как специалист. Средняя зарплата электрика на 2017 год составляет 35000 рублей. Учитывая дополнительные подработки по вызову и повышение разряда, несложно будет зарабатывать намного больше – от 50000 рублей. Эти цифры уже больше проясняют картину, перспективно ли становиться электриком.

В дополнение ко всему сказанному хотелось бы порекомендовать несколько источников информации:

  1. – минимальный набор обязательно должен у вас присутствовать с самого начала обучения.
  2. – раздел в котором мы рассматриваем все нюансы и опасные ситуации, о которых вы, как новичок должны знать. Не забываем, что у профессии электрик есть свой главный минус – работа опасная, т.к. вы будете иметь дело с электрическим током.

Добавить сайт в закладки

Что нужно знать об электричестве новичкам?

К нам часто обращаются читатели, которые раньше не сталкивались с работами по электричеству, но хотят в этом разобраться. Для этой категории создана рубрика "Электричество для начинающих".

Рисунок 1. Движение электронов в проводнике.

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретиче­ски в этом вопросе.

Термин "электричество" подразумевает движение электронов под действием электромагнитного поля.

Главное - понять, что электричест­во - это энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении (рис. 1).

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток - это ток, который с определенной периодичностью меняет направление движения и величину. Представьте ток как поток воды, те­кущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую.

Рисунок 2. Схема устройства трансформатора.

С током это происходит на­много быстрее, 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного. Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 2).

Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи транс­форматора (специаль­ного устройства в виде катушек) переменный ток преобразу­ется с низкого напряжения на высокое, и наоборот, как это представлено на иллюстрации (рис. 3).

Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток также применяется достаточно широко: во всех видах батарей, в химической промышленности и некоторых других областях.

Рисунок 3. Схема передачи переменного тока.

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это надо обязательно.

Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть - это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электри­ческая цепь состоит из двух проводов. По одному ток идет к потребителю (например к чайнику), а по другому воз­вращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи (рис. 4 А).

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается - нулевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120° (рис. 4 Б). Более подробно на этот вопрос поможет ответить учебник по электромеханике.

Рисунок 4. Схема электрических цепей.

Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически: не нужны еще два нулевых провода. Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы.

Земля, или, правильнее сказать, заземление - третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предо­хранителем.

Например, в случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток элек­тричества в буквальном смысле слова уходит в землю (рис. 5).

Рисунок 5. Простейшая схема заземления.

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора.

Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током.

При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что нулевой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции.

Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.

ВНИМАНИЕ!

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нулевой провод как заземляющий. Никогда так не делайте.

При обрыве нулевого провода корпуса заземленных приборов окажутся под напряжением 220 В.